
#ChicagoTechFest Hear It.  See It.  Do It.#ChicagoTechFest Hear It.  See It.  Do It.

Microservice Architecture  & 
Domain Driven Design

Amro Kudssi, MSc

AAAEA IL - President



#ChicagoTechFest Hear It.  See It.  Do It.

Software Service

A service that provides a business or technical capability
oWeather forecasting service

o Shipment tracking service

oAddress searching service

oAccount Transfer service

oWire service

o Send Email 

oBuy a stock

o Find a flight

oReserve a flight

o…

o…



#ChicagoTechFest Hear It.  See It.  Do It.

Software Application

An Application is a combination of software services 
oGmail 

▪ View list of emails

▪ Read an email

▪ Send email 

▪ Search email

▪ ..

oWeather.com
▪ Get current temperature

▪ Get a forecast by zip

▪ …



#ChicagoTechFest Hear It.  See It.  Do It.

A Monolith Application



#ChicagoTechFest Hear It.  See It.  Do It.

Some of Monolith Issues

Quality attributes

• Complexity

• Changeability

• Deployability

• Scalability

• Reliability  

• Testability

• … Source: www.crystalinks.com



#ChicagoTechFest Hear It.  See It.  Do It.

A Microservice

• A relatively small software component that does one thing 
and one thing only
oSimple to build.

oSimple to test. 

oSimple to deploy. 

oSimple to scale.



#ChicagoTechFest Hear It.  See It.  Do It.

Microservice Architecture

• Bunch of loosely coupled microservices that provide  
business capabilities 

• The microservice architecture enables the continuous 
delivery/deployment of large, complex applications. 

• It also enables an organization to evolve its technology 
stack.



#ChicagoTechFest Hear It.  See It.  Do It.

In Microservice Architecture

Quality attributes

• Complexity

• Changeability

• Deployability

• Scalability

• Reliability  

• Testability Source: www.crystalinks.com



#ChicagoTechFest Hear It.  See It.  Do It.

Microservice Architecture



#ChicagoTechFest Hear It.  See It.  Do It.

Monolith vs Microservices

Source: www.knoldus.com



#ChicagoTechFest Hear It.  See It.  Do It.

Monolith vs Microservices

Source: www.medium.com



#ChicagoTechFest Hear It.  See It.  Do It.

The Design Problem

The history of the design  in JPMC from Waterfall to Agile



#ChicagoTechFest Hear It.  See It.  Do It.

Bad Design - Business Reasons

• Software development is considered a cost center rather than a profit 
center.

• Producing Designs adds significant time and effort, resulting in the 
delay of software deliverables.

• Overly generalizing solutions rather than addressing actual concrete 
business needs.



#ChicagoTechFest Hear It.  See It.  Do It.

Bad Designs - Technical Reasons

• Developers are too concerned about technology.
• Developers attempt to address all current and imagined 

future needs
• No emphasis on naming objects and operations according to 

the business purpose that they fill
• The database is given too much priority.

oLarge, slow, and locking DB queries.



#ChicagoTechFest Hear It.  See It.  Do It.

Traditional Design Approaches 

Source: Vernon, Vaughn. Domain-Driven Design Distilled  



#ChicagoTechFest Hear It.  See It.  Do It.

Big Ball of Mud

Source: Vernon, Vaughn. Domain-Driven Design Distilled  



#ChicagoTechFest Hear It.  See It.  Do It.

Domain Driven Design ( DDD )

DDD is about modeling a Ubiquitous Language in an explicitly Bounded 
Context.



#ChicagoTechFest Hear It.  See It.  Do It.

Ubiquitous Language

The language  that is used between team members (developers and 
Domain Experts) is called the Ubiquitous Language because it is both 
spoken among the team members and implemented in the software 
model. 

It is necessary to be rigorous, strict, exact, and tight.



#ChicagoTechFest Hear It.  See It.  Do It.

Bounded Context

a Bounded Context is a semantic contextual boundary. 



#ChicagoTechFest Hear It.  See It.  Do It.

Bounded Context

Source: Vernon, Vaughn. Domain-Driven Design Distilled  



#ChicagoTechFest Hear It.  See It.  Do It.

Bounded Context

Source: Vernon, Vaughn. Domain-Driven Design Distilled  



#ChicagoTechFest Hear It.  See It.  Do It.

DDD Techniques 

Event Storming

Strategic Designs Techniques
• Bounded Context and Ubiquitous Language

• Domains and Subdomains

• Context Mapping

Tactical Designs Techniques
• Aggregates

• Entities and Value Types

• Domain Events & Commands

Relationship with our Agile Process



#ChicagoTechFest Hear It.  See It.  Do It.

Package Shipping Business Domain



#ChicagoTechFest Hear It.  See It.  Do It.

Domains and Sub-domains

• Enterprise Applications usually consists of multiple Domains

• The organization strategic initiative Bounded Context is called the Core 
Domain.

• Other surrounding domains are called Sub-Domains

• a Subdomain is a sub-part of the overall business domain.

• Subdomains can be used to logically break up the whole business 
domain to simplify problem space on a large, complex project.



#ChicagoTechFest Hear It.  See It.  Do It.

Event Storming

• Rapid design technique engages Business and Tech in rapid learning process 
to define business process(s)

• Using sticky notes & markers everyone focuses on creating Business Events. 
Wide wall or long role of paper  

• Event Storming:
• Storm out the following from left to right and in following order

1. Business domain Events Past tense verb  (Orange stickies)
2. Before each event place Command that caused the event (Blue sticky)
3. Any process that is caused by Event or a Command should be placed and connected with 

arrow (Lilac sticky)
4. Identify any special roles needed to any command 
5. Start forming the Entities and Aggregates around your corresponding Commands (Yellow 

sticky)
6. Draw boundaries around aggregates  creating your core domain and other subdomains



#ChicagoTechFest Hear It.  See It.  Do It.

Event Storming



#ChicagoTechFest Hear It.  See It.  Do It.

Business Domains

Domains and Sub-domains



#ChicagoTechFest Hear It.  See It.  Do It.

Subdomain Types

Core Domain: Strategic Investment, Core business , Elite developers, 
Competitive edge. 

Supporting Subdomain: Supports Core Domain. Custom development 
because an off-the-shelf solution doesn’t exist. Not the same investment 
of the Core Domain. 

Generic Subdomain: Could be available for purchase off the shelf but may 
also be outsourced or even developed in house by a team that doesn’t 
have elite developers



#ChicagoTechFest Hear It.  See It.  Do It.

Sub Domain Types

Subdomain Types



#ChicagoTechFest Hear It.  See It.  Do It.

DDD Tactical Design Techniques

Entities vs Value objects

Aggregates

Domain Models

Domain Events



#ChicagoTechFest Hear It.  See It.  Do It.

Entities and Value Objects

Entity is a unique individual 
thing in the domain that can 
be distinguished  from other 
Entities that are of Same or 
Different types

Value Object is an immutable 
value that describes the 
Entity. It does not a thing and 
not unique

References to Entities in 
Other Aggregates 



#ChicagoTechFest Hear It.  See It.  Do It.

Aggregates

• Aggregates are clusters 
of objects

• Each Aggregate has 
Root Entity that owns 
all elements

• Aggregates forms 
Transactional 
Consistency 
boundaries

• Aggregates update in 
single business 
transaction 



#ChicagoTechFest Hear It.  See It.  Do It.

Aggregate Rules

Large Aggregates



#ChicagoTechFest Hear It.  See It.  Do It.

Aggregate Design Rules -1

Design Small Aggregates

-More transaction Success
-Single Responsibility 
Principle 

Two smaller Aggregates



#ChicagoTechFest Hear It.  See It.  Do It.

Aggregate Design Rules -2

Protect Business Invariants 
inside Aggregate Boundaries



#ChicagoTechFest Hear It.  See It.  Do It.

Aggregate Rules -3 

Reference other Aggregates 
by identity (key) only.



#ChicagoTechFest Hear It.  See It.  Do It.

Aggregate Rules -4

Update other Aggregates 
using Eventual Consistency 

Messaging Mechanism 

Package Shipment

Publishing 
Context

Subscribing 
Context

Domain Event Domain Event

Location

HopCustomer ID



#ChicagoTechFest Hear It.  See It.  Do It.

Domain Model



#ChicagoTechFest Hear It.  See It.  Do It.

Domain Model



#ChicagoTechFest Hear It.  See It.  Do It.

Messages for each Aggregate
Bounded Context: Sales

Customer: View Service Rates (in: Package, From Location, To Location out: Services)

Customer: Buy Service (in: Customer, Package, From Location, To Location, Service out: Package Id)

Customer: Report Missing Delivery (in: Package Id, out: Investigation Id)

Bounded Context: Delivery Tracking

Customer: Receive Delivery Status (in: Service Id out: trackable steps: List::Hop)

Bounded Context: Shipping Context

System: Create Shipment (in: Package Id, Collection Location, Delivery Location, Hops {ordered set} out: Shipment Id)

System: Register Package (in: Shipment Id, Package Id out: Shipment Id)

Courier: Deliver Package (in: Shipment Id, Package Id, Digital Signature)

Bounded Context: Service Ref Data

System Administrator: Maintain Hop Metadata (in: Location, Facilities out: Hop Id)

System Administrator: Maintain Service Type (in: Type, Price out: Service Id)



#ChicagoTechFest Hear It.  See It.  Do It.

Define a State Machine for each Aggregate

Shipping state machine



#ChicagoTechFest Hear It.  See It.  Do It.

Define a State Machine for each Aggregate

Sales state machine



#ChicagoTechFest Hear It.  See It.  Do It.

Customer Journey 



#ChicagoTechFest Hear It.  See It.  Do It.

Domain Design Easy Traps

Anemic Domain Model
o Aggregates have technical rather than business focus

o Takes all the overhead of OOD/OOP without realizing the benefits

Leaking Business Logic into the service layer
o Services suffer from identity crisis 

o Business Logic must be embedded inside its domain model

o Bunch of public empty getters and setters



#ChicagoTechFest Hear It.  See It.  Do It.

DDD from Design To Microservice Implementation

1. Start with Event Storming Session

2. Create use case from business requirements

3. Choose your Core, Support, Generic business domains

4. Create your aggregates into their own Bounded Contexts using their 
ubiquitous language

5. Create the Domain models

6. The use cases become messages (operations) between aggregates

7. Create State Machine diagrams to represents various aggregate states

8. System documentation is actually your functional test using Behavioral 
Driven Design (BDD)



#ChicagoTechFest Hear It.  See It.  Do It.

TDD , BDD

1.Identify business feature.

2.Identify scenarios under the selected feature.

3.Define steps for each scenario.

4.Run feature and fail.

5.Write code to make steps pass.

6.Refactor code, Create reusable automation library.

7.Run feature and pass.

8.Generate test reports.



#ChicagoTechFest Hear It.  See It.  Do It.

Other DDD Tools

• SWOT (Strength, Weakness, Opportunity and Threat

• Timebox modeling

• Functional Tests and BDD/ATDD System specifications need to be 
documented as features and scenarios (Given/when/then)



#ChicagoTechFest Hear It.  See It.  Do It.

Resources and References



#ChicagoTechFest Hear It.  See It.  Do It.

THANK YOU!!!



#ChicagoTechFest Hear It.  See It.  Do It.

What’s Next on DDD

Full day workshop on DDD and Microservice Design Concepts is in all CCB 
TechHubs in October, November and December



#ChicagoTechFest Hear It.  See It.  Do It.

Appendix



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping

Represents the relation ship between the contexts. Both Team and 
Technology

Relationships



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping - Partnership

Closely aligns two teams with dependent set of goals.
• Synchronized, Continuous Integration.

• Hard to keep for long time. Limits need to be set.

Partnership



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Shared Kernel

Teams (two or more) share a small common model
• Possibly on team owns and maintain that shared kernel

• Open communication between the teams and Constant agreement

Shared Kernel



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Customer-Supplier

Supplier (U) holds the sway and Determine what the Customer (D) will 
get and when.

• Supplier plans to meet some/all customer needs

• Customer plan with Supplier to meet various expectations

Customer-Supplier 



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping - Conformist

Upstream team has no motivation to support specific needs for 
Downstream team

• Downstream team Conforms with Upstream specs

• Example Amazon.com and its sellers

Conformist



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Anticorruption Layer

Downstream teams creates translation layer to isolate them from 
Upstream team changes

• Most Defensive relationship

• A common solution used to integrate with legacy systems

Anticorruption Layer



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Open Host Service

Upstream system defines a protocol/Interface to downstream access to 
their bounded context set of services

• Well documented API from Team 1

• No need for Anti corruption layer, Team 2 can be comfortably  Conformist 

Open Host System



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Published Language

Upstream system Publishes communication language of some standard
• Examples XML or JSON Schema, RESTful API, Async Messaging

• Consumer can translate from and to the language easily

Published Language



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Separate Ways

The integration will provide No significant payoff  
• No one ubiquitous language  provides the needed functionality

• Consumer builds its own solution and forget about integration to the 
provider ubiquitous language

Separate Ways



#ChicagoTechFest Hear It.  See It.  Do It.

Context Mapping – Big Ball of Mud

This should be avoided at all costs
• Overtime, more and more cross aggregate relationship will be created, 

making system maintenance harder costly 

• System will completely collapse eventually 

Big Ball of Mud

Source: Vernon, Vaughn. Domain-Driven Design Distilled  


